Description: Our story Our early brainstorming sessions were very effective and resulted in countless ideas regarding our project idea and scope. After several meetings and debates we narrowed it down to 3 main topics: pathogenic bacteria detecting sensor for food, possible upgrade for probiotic bacteria or using CRISPR to introduce information to bacteria genome as a binary code. From those, the CRISPR project was the one we initially chose. However, during the research phase, we found an issue that can not be solved within a reasonable timeframe and we had to develop a new idea. That is how our current project came into fruition. Our goal In a world where computers are getting increasingly life-like, it is our goal to introduce computational logic in living organisms. As NTNU’s contribution to the 2016 international iGEM competition, we will make a system for introducing logic gates in living cells. Computers work by moving information between computational units, called gates. Each of these gates exhibits a simple logical statement (AND, OR, NOT...). The implementation of these logic gates is the foundation for all of the life-changing applications computer technology has provided. Our goal is to bring the great potential of computer technology, such as developing a new generation of biosensors, improving the process of industrial fermentations, or advancing cancer research to the field of biological engineering. In order to achieve this, we are making a system for engineering in vivo logic gates. We are planning to introduce XOR logic gate into E.Coli genetic code.
Collaboration details:
Year: 2016Visit Wiki
Social Media: Facebook Twitter


Updated at: 8/9/16